Thread-based Parallelism

Thread synchronization with a condition

A condition identifies a change of state in the application. This is a synchronization
mechanism where a thread waits for a specific condition and another thread notifies that this
condition has taken place. Once the condition takes place, the thread acquires the lock to get
exclusive access to the shared resource.

Getting ready

A good way to illustrate this mechanism is by looking again at a producer/consumer problem.
The class producer writes to a buffer as long as it is not full, and the class consumer takes the
data from the buffer (eliminating them from the latter), as long as the buffer is full. The class
producer will notify the consumer that the buffer is not empty, while the consumer will report
to the producer that the buffer is not full.

How to do it...

To show you the condition mechanism, we will again use the consumer producer model:

from threading import Thread, Condition
import time

items = []
condition = Condition/()

class consumer (Thread) :
def init (self):
Thread. init (self)

def consume (self) :
global condition
global items

condition.acquire ()
if len(items) ==
condition.wait ()
print ("Consumer notify : no item to consume")
items.pop ()
print ("Consumer notify : consumed 1 item")
print ("Consumer notify : items to consume are "\
+ str(len(items)))

=

condition.notify ()
condition.release()

def run(self) :
for i in range(0,20):
time.sleep(10)
self.consume ()

class producer (Thread) :
def init (self):
Thread. init (self)

def produce (self) :
global condition
global items

condition.acquire ()
if len(items) == 10:
condition.wait ()

print ("Producer notify : items producted are "\
+ str(len(items)))
print ("Producer notify : stop the production!!")

items.append (1)

print ("Producer notify : total items producted "\

+ str(len(items)))
condition.notify ()
condition.release()

def run(self) :
for i in range(0,20) :
time.sleep(5)
self .produce ()

if name == " main ":
producer = producer ()
consumer = consumer ()
producer.start ()
consumer.start ()
producer.join ()
consumer.join ()

Chapter 2

]

Thread-based Parallelism

This is the result that we get after a single run:

74 Python Shell

File Edit Shell Debug Options Windows Help
Producer notify : total items producted 7
Consumer notify : consumed 1 item

Consumer notify : items to consume are 6
Producer notify : total items producted 7
Producer notify : total items producted &
Consumer notify : consumed 1 item

Consumer notify : items to consume are 7

Producer notify : total items producted &
Producer notify : total items producted 9
Consumer notify : consumed 1 item

Consumer notify : items to consume are 8
Producer notify : total items producted 9

Producer notify : total items producted 10
Consumer notify : consumed 1 item
Consumer notify : item= to consume are 9
Producer notify : total items producted 10
Consumer notify : consumed 1 item
Consumer notify : items to consume are 9

Consumer notify : consumed 1 item
Consumer notify : items to consume are 8
Consumer notify : consumed 1 item
Consumer notify : items to consume are 7
Consumer notify : consumed 1 item

Consumer notify : items= to consume are 6
Consumer notify : consumed 1 item
Consumer notify : items= to consume are 5
Consumer notify : consumed 1 item
Consumer notify : item= to consume are 4
Consumer notify : consumed 1 item

Consumer notify : item= to consume are 3
Consumer notify : consumed 1 item
Consumer notify : items to consume are 2
Consumer notify : consumed 1 item
Consumer notify : items to consume are 1
Consumer notify : consumed 1 item
Consumer notify : items to consume are 0
P>

Ln: 84

The class consumer acquires the shared resource that is modeled through the list items []:
condition.acquire ()
If the length of the list is equal to 0, the consumer is placed in a waiting state:

if len(items) == 0:
(

)

condition.wait

=

Chapter 2

Otherwise, it makes a pop operation from the items list:
items.pop ()
So, the consumer's state is notified to the producer and the shared resource is released:

condition.notify ()
condition.release()

The class producer acquires the shared resource and then it verifies that the list is completely
full (in our example, we place the maximum number of items, 10, that can be contained in
the items list). If the list is full, then the producer is placed in the wait state until the list is
consumed:

condition.acquire ()
if len(items) == 10:
condition.wait ()

If the list is not full, a single item is added. The state is notified and the resource is released:

condition.notify ()
condition.release()

There's more...

It's interesting to see the Python internals for the condition synchronizations mechanism. The
internal class _Condition creates a RLock () object if no existing lock is passed to the class's
constructor. Also, the lock will be managed when acquire () and released () are called:

class _Condition(_Verbose) :
def _ init__ (self, lock=None, verbose=None) :
_Verbose.__init__ (self, verbose)
if lock is None:
lock = RLock ()
self. lock = lock

Thread synchronization with an event

Events are objects that are used for communication between threads. A thread waits for a
signal while another thread outputs it. Basically, an event object manages an internal flag that
can be set to true with the set () method and reset to false with the clear () method.
The wait () method blocks until the flag is true.

s

Thread-based Parallelism

How to do it...

To understand the thread synchronization through the event object, let's take a look again
at the producer/consumer problem:

import time
from threading import Thread, Event
import random

[]

event = Event ()

items

class consumer (Thread) :
def init (self, items, event):
Thread. init (self)
self.items = items
self.event = event

def run(self) :
while True:
time.sleep(2)
self.event.wait ()
item = self.items.pop ()
print ('Consumer notify : %d popped from list by %s'\
% (item, self.name))

class producer (Thread) :
def init (self, integers, event):
Thread. init (self)
self.items = items
self.event = event

def run(self):
global item
for i in range(100) :
time.sleep(2)
item = random.randint (0, 256)
self.items.append (item)
print ('Producer notify : item N° %d appended \
to list by %s'\
% (item, self.name))
print ('Producer notify : event set by %s'\

)

% self.name)

5]

Chapter 2

self.event.set ()
print ('Produce notify :

)

% self.name)

event cleared by %s \n'\

self.event.clear ()

if name == ' main ':
tl = producer (items, event)
t2 = consumer (items, event)
tl.start ()
t2.start ()
tl.join()

t2.join()

This is the output that we get when we run the program. The t1 thread appends a value to
the list and then sets the event to notify the consumer. The consumer's call to wait () stops
blocking and the integer is retrieved from the list.

-
| 74 *Python Shell* C=S0ET X
L
File Edit Shell Debug Options Windows Help
I Producer notify item 204 appended to list by Thread-1 it il
Producer notify event set by Thread-1 i
Produce notify event cleared by Thread-1 i
Consumer notify 204 popped from list by Thread-2
Producer notify item 98 appended to list by Thread-1
Producer notify event set by Thread-1
Produce notify event cleared by Thread-1
Consumer notify 98 popped from list by Thread-2
Producer notify item 90 appended to list by Thread-1
Producer notify event set by Thread-1
Produce notify event cleared by Thread-1
[Consumer notify 90 popped from list by Thread-2
Producer notify item 3 appended to list by Thread-1
Producer notify event set by Thread-1
Produce notify event cleared by Thread-1
| Consumer notify 3 popped from list by Thread-2
| Producer nocify item 162 appended to 1list by Thread-1
Producer notify event set by Thread-1
Produce notify event cleared by Thread-1
‘ Consumer notify 162 popped from list by Thread-2
Producer notify item 208 appended to list by Thread-1
Producer notify event set by Thread-1
Produce notify event cleared by Thread-1
Consumer notify 208 popped from list by Thread-2
Producer notify item 97 appended to list by Thread-1
Producer notify event set by Thread-1
Produce notify event cleared by Thread-1
Consumer notify 97 popped from list by Thread-2
|
| Producer notify item 233 appended to list by Thread-1
Producer notify event set by Thread-1
Produce notify event cleared by Thread-1
Consumer notify 233 popped from list by Thread-2
-
Ln: 480 |Col: 0

7}

Thread-based Parallelism

The producer class is initialized with the list of items and the Event () function. Unlike the
example with condition objects, the item list is not global, but it is passed as a parameter:

class consumer (Thread) :
def init (self, items, event):
Thread. init (self)
self.items = items
self.event = event

In the run method for each item that is created, the producer class appends it to the list of
items and then notifies the event. There are two steps that you need to take for this and the
first step is as follows:

self.event.set ()
The second step is:
self.event.clear ()

The consumer class is initialized with the list of items and the Event () function.

In the run method, the consumer waits for a new item to consume. When the item arrives, it is
popped from the item list:

def run(self) :
while True:
time.sleep(2)
self.event.wait ()
item = self.items.pop ()
print ('Consumer notify : %d popped from list by %s' %
(item, self.name))

All the operations between the producer and the consumer classes can be easily resumed
with the help of the following schema:

Producer Event Management Consumer Event Management

add -8
item

wait C

set
event
l remove

item

clear

elle event

Thread synchronization with event objects

SED

Chapter 2

Using the with statement

Python's with statement was introduced in Python 2.5. It's useful when you have two related
operations that must be executed as a pair with a block of code in between. Also, with the
with statement, you can allocate and release some resource exactly where you need it; for
this reason, the with statement is called a context manager. In the threading module, all
the objects provided by the acquire () and release () methods may be used ina with
statement block.

So the following objects can be used as context managers for a with statement:

» Lock

» RLock

» Condition
» Semaphore

Getting ready

In this example, we simply test all the objects using the with statement.

How to do it...

This example shows the basic use of the with statement. We have a set with the most
important synchronization primitives. So, we test them by calling each one with the with
statement:

import threading
import logging

logging.basicConfig(level=1logging.DEBUG,
format="' (% (threadName) -10s) % (message)s',)

def threading with(statement) :
with statement:
logging.debug('%s acquired via with' $%statement)

def threading not with(statement) :
statement.acquire ()
try:
logging.debug('%s acquired directly' %statement)
finally:
statement.release ()

Thread-based Parallelism

if name == ' main ':

#let's create a test battery

#in

e

lock = threading.Lock ()

rlock = threading.RLock ()

condition = threading.Condition/()

mutex = threading.Semaphore (1)

threading synchronization list = \
[lock, rlock, condition, mutex]

the for cycle we call the threading with
threading no with function
for statement in threading synchronization list
tl = threading.Thread(target=threading with,
args= (statement,))
t2 = threading.Thread(target=threading not with,
args= (statement,))
tl.start ()
t2.start ()
tl.join()
t2.join()

The output shows the use of the with statement for each function and also where it is not

used:

File Edit Shell Debug Optiens Windows Help

Python 3.3.0 (v3.3.0:bd8afb%0ebf2, Sep 29 2012, 10:55:48) [M5C v.1600 32 bit (Intel)] on win32
Type "copyright", "credits" or "license ()" for more information.

>3
e

RESTART

(Thread-1 «_thread.lock object at O0xO01RZ3620> acguired via with

[Thread-2 «_thread.lock object at Ox01A29620> acquired directly

(Thread-3 «_thread.RLock owner=3344 count=1> acquired via with

(Thread-4 <_thread.RLock owner=T7420 cou 1% acguired directly

(Thread-5 «<Condition (<_thread.RLock owner=7720 count=1>, 0)> acgquired via with
(Thread-& «<Condition («_thread.RLock owner=6080 count=1>, 0)> acguired directly
(Thread-7 <threading.Semaphore object at 0x01ED2710> acguired wvia with
(Thread-8 <threading.Semaphore object at 0x01ED8710> acqguired directly

Frx

&)

Chapter 2

In the main program, we have defined a list, threading synchronization list, of
thread communication directives that are to be tested:

lock = threading.Lock ()

rlock = threading.RLock ()
condition = threading.Condition/()
mutex = threading.Semaphore (1)
threading synchronization list = \

[lock, rlock, condition, mutex]
After defining them, we pass each object in the for cycle:

for statement in threading synchronization list

tl = threading.Thread(target=threading with,
args= (statement,))
t2 = threading.Thread(target=threading not with,

args= (statement,))

Finally, we have two target functions, in which the threading with tests the with
statement:

def threading with(statement) :
with statement:
logging.debug('%s acquired via with' $%statement)

There's more...

In the following example we have used the Python support for logging, as we can see:

logging.basicConfig(level=1logging.DEBUG,
format="' (% (threadName) -10s) % (message)s',)

It embeds the thread name in every log message using the formatter code's % (threadName)
s statement. The logging module is thread-safe, so the messages from different threads are
kept distinct in the output.

&1}

Thread-based Parallelism

Thread communication using a queue

As discussed earlier, threading can be complicated when threads need to share data or
resources. As we saw, the Python threading module provides many synchronization primitives,
including semaphores, condition variables, events, and locks. While these options exist, it

is considered a best practice to instead concentrate on using the module queue. Queues

are much easier to deal with and make threaded programming considerably safer, as they
effectively funnel all access to a resource of a single thread and allow a cleaner and more
readable design pattern.

We will simply consider these four queue methods:

» put (): This puts an item in the queue

» get (): This removes and returns an item from the queue

» task_done (): This needs to be called each time an item has been processed
» Jjoin(): This blocks until all items have been processed

How to do it...

In this example, we will see how to use the threading module with the queue module. Also, we
have two entities here that try to share a common resource, a queue. The code is as follows:

from threading import Thread, Event
from queue import Queue
import time

import random

class producer (Thread) :
def init (self, queue):
Thread. init (self)
self.queue = queue

def run(self)
for i in range(10) :

item = random.randint (0, 256)

self.queue.put (item)

print ('Producer notify:
\n'\
% (item, self.name))

time.sleep(1)

class consumer (Thread) :

if

def init (self, queue):
Thread. init (self)

sel

def run
whi

name

f.queue = queue

(self) :
le True:

item = self.queue.get ()

print ('Consumer notify

[

% (item,

self.name))

self.queue.task done ()

== ' main ':

queue = Queue ()

tl
t2
t3
t4
tl
t2.
t3
t4.
tl
t2.
t3
t4.

.join(

.join(

= producer (queue

consumer (queue

consumer (queue

consumer (queue

.start ()

start

()
.start ()
()

start

)
join ()
)
)

join (

)
)
)
)

Chapter 2

item N°%d appended to queue by %s

$d popped from queue by %s'\

(&5}

Thread-based Parallelism

After running the code, you should have an output similar to this:

File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bd8afb00ebf2, Sep 29 2012, 10:55:48) [M5C v.1600 32 bit (Intel)] on win32 -
Type "copyright", "credits" or "license ()" for more information.

>>> RESTART

>>>

Producer notify : item N° 68 appended to gqueue by Thread-1
Consumer notify : &8 popped from queue by Thread-2
Producer notify : item N° 101 appended to gueue by Thread-1
Consumer notify : 101 popped from gueue by Thread-2

Producer notify : item N° 64 appended to gqueue by Thread-1
Consumer notify : 64 popped from gqueue by Thread-3

Producer notify : item N° 193 appended to gueue by Thread-1
Consumer notify : 193 popped from gqueue by Thread-4

Producer notify : item N° 234 appended to gueue by Thread-1
Consumer notify : 234 popped from gqueue by Thread-2

Consumer notify : 135 popped from gueue by Thread-3Producer notify : item N® 135 appended to gueue by Thread-1
Producer notify : item N° 186 appended to gueue by Thread-1
Consumer notify : 186 popped from gqgueue by Thread-4

Producer notify : item N° 135 appended to gueue by Thread-1
Consumer notify : 135 popped from gqgueue by Thread-2

Producer notify : item N° 217 appended to gueue by Thread-1
Consumer notify : 217 popped from gueue by Thread-3

Producer notify : item N° 87 appended to gqueue by Thread-1
Consumer notify : 87 popped from gqueue by Thread-4

Ln: 35/Col: 0

First, the producer class. We don't need to pass the integers list because we use the queue
to store the integers that are generated:

class producer (Thread) :
def _init__ (self, queue):
Thread. init__ (self)
self.queue = queue

=

Chapter 2

The thread in the producer class generates integers and puts them in the queue in a
for loop:

def run(self)
for i in range(100) :
item = random.randint (0, 256)
self.queue.put (item)

The producer uses Queue.put (item[, block[, timeout]]) toinsert data into the
queue. It has the logic to acquire the lock before inserting data in a queue.

There are two possibilities:

» If optional args block is true and timeout is None (this is the default case that
we used in the example), it is necessary for us to block until a free slot is available.
If timeout is a positive number, it blocks at most t imeout seconds and raises the
full exception if no free slot is available within that time.

» Ifthe block is false, put an item in the queue if a free slot is immediately available;
otherwise, raise the full exception (timeout is ignored in this case). Here, put ()
checks whether the queue is full and then calls wait () internally and after this, the
producer starts waiting.

Next is the consumer class. The thread gets the integer from the queue and indicates that
it is done working on it using task done ():

def run(self):
while True:
item = self.queue.get ()
self.queue.task done ()

The consumer uses Queue.get ([block [, timeout]]) and acquires the lock before
removing data from the queue. If the queue is empty, it puts the consumer in a waiting state.

Finally, in the main, we create the t thread for the producer and three threads, t1, t2, and t3
for the consumer class:

if __name_ == '_main_ ':

queue = Queue ()
t = producer (queue)

tl = consumer (queue)
t2 = consumer (queue)
t3 = consumer (queue)

(&)

Thread-based Parallelism

t.start ()
tl.start ()
t2.start ()
t3.start ()

t.join ()
tl.join()
t2.join()
t3.join()

All the operations between the producer class and the consumer class can easily be
resumed with the following schema:

-

/

e

___________________ [/ Consumer \\‘
H \ Thread 2 /
QUEUE ! A | 4

— T /// - o .
‘,/ Producer \P § o v/’ Consumer \\‘
| Thread / \ Thread 2 /
\ / A /

E //” - m""*\
_________________________ M/ Consumer \\‘
\ Thread 2 /
A 4

y:
\

Thread synchronization with the queue module

Evaluating the performance of multithread

applications

In this recipe, we will verify the impact of the GIL, evaluating the performance of a multithread
application. The GIL, as described in the previous chapter, is the lock introduced by the
CPython interpreter. The GIL prevents parallel execution of multiple threads in the interpreter.
Before being executed each thread must wait for the GIL to release the thread that is running.
In fact, the interpreter forces the executing thread to acquire the GIL before it accesses
anything on the interpreter itself as the stack and instances of Python objects. This is precisely
the purpose of GIL—it prevents concurrent access to Python objects from different threads.
The GIL then protects the memory of the interpreter and makes the garbage work in the right
manner. The fact is that the GIL prevents the programmer from improving the performance by
executing threads in parallel. If we remove the GIL from the CPython interpreter, the threads
would be executed in parallel. The GIL does not prevent a process from running on a different
processor, it simply allows only one thread at a time to turn inside the interpreter.

(e8]

